## Finds in arxiv, January.

Repost from googleplus stream

Finds in arxiv

**Computer vision**

*Convex Relaxations of SE(2) and SE(3) for Visual Pose Estimation*

Finding camera position from the series of 2D (or depth) images is one of the most common (and difficult) task of computer vision.

The biggest problem here is incorporating rotation into cost(energy) function, that should minimize reprojection(fro 2D) error (seehttp://en.wikipedia.org/wiki/Bundle_adjustment). Usually it’s done by minimization on manifold – locally presenting rotation parameter space as linear subspace. The problem with that approach is that initial approximation should be good enough and minimization goes by small steps pojecting/reprojecting on manifold (SO(3) in the case) which can stuck in local minimum. Where to start if the is no initial approximation? Usually it’s just brute-forced with several initialization attempt. Here in the paper approach is different – no initial approximation needed, solution is straightforward and minimum is global. The idea is instead of minimizing rotation on the sphere minimize it inside the ball. In fact it’s a classical **convexification** approach – increase dimentionality of the problem to make it convex. The pay is a lot higher computational cost of cause

http://arxiv.org/abs/1401.3700

*A Sparse Outliers Iterative Removal Algorithm to Model the Background in the Video Sequences*

Background removal without nuclear norm. Some “good” frames chosen as dictionary and backround represented in it.

http://arxiv.org/abs/1401.6013

**Deep Learning**

*Learning Mid-Level Features and Modeling Neuron Selectivity for Image Classification*

Mid level features is a relatively new concept but a very old practice. It’s a building “efficient” subset of features from the set of features obtained by low-level feature descriptor(like SIFT, SURF, FREAK etc) Before it was done by PCA, later by sparse coding.

What authors built is some kind of hibrid of convolutional network with dictionary learning. Mid level features fed into neuron layer for sparsification and result into classifier. There are some benchmarks but no CIFAR or MINST

http://arxiv.org/abs/1401.5535

**Optimization and CS**

*Alternating projections and coupling slope*

Finding intersection of two non-convex sets with alternating projection. I didn’t new that transversality condition used a lot in convex geometry too.

http://arxiv.org/abs/1401.7569

*Bayesian Pursuit Algorithms*

Bayesian version of hard thresholding. Bayesian approach is in how threshold is chosen and update scaled.

http://arxiv.org/abs/1401.7538

## “get nan or inf error” in cuda-convnet – possible fix

“get nan or inf” error happens sometimes on lower-end GPU’s in cuda-convnet. I have traced this error to NaN values in the weights of convolutional layers. I still not clear to me why these NaN values appear in the weights. Are they backpropagate from fully-connected layers or popping up in the convolution kernel? It looks to me latter is more likely. Anyway I made a temporary fix – just scan weight’s gradients with simple cuda kernel and replace NaN’a with zeroes. Didn’t observe the error after that.

I have pushed fix into windows version of cuda-convnet at

https://github.com/s271/win_convnet

Fix activated with option –fix-nan=1

There shouldn’t be any problem with making those changes for linux version – there are several small changes in *.cu and *.py files only

PS

If anyone wondering what cuda-convnet is here is a nice explanation:

http://fastml.com/object-recognition-in-images-with-cuda-convnet/

And here is the main paper about cuda-convnet

http://books.nips.cc/papers/files/nips25/NIPS2012_0534.pdf

## December finds in #arxiv

Repost from my googleplus stream

**Computer Vision**

*Non-Local means is a local image denoising algorithm*

Paper shows that non-local mean weights are not identify patches globally point in the images, but are susceptible to aperture problem:

http://en.wikipedia.org/wiki/Optical_flow#Estimation That’s why short radius NLM could be better then large radius NLM. Small radius cutoff play the role of regularizer, similar to the Total Variation in Horn-Shunk Optical flow.

http://en.wikipedia.org/wiki/Horn%E2%80%93Schunck_method (my comment – TV-L1 is generally better than TV-L2 in Horn-Schunk)

http://arxiv.org/abs/1311.3768

**Deep Learning**

*Do Deep Nets Really Need to be Deep?*

Authors state that shallow neural nets can in fact achieve similar performance to deep convolutional nets. The problem though is, that they had to be initialized or preconditioned – they can not be trained using existing algorithms.

And for that initialization they need deep nets. Authors hypothesize that there should be algorithms that allow training of those shallow nets to reach the same performance as deep nets.

http://arxiv.org/abs/1312.6184

*Intriguing properties of neural networks*

The linear combination of deep-level nodes produce the same results as the the original nodes. That suggest that nodes the spaces itself rather it’s representation keep information for deep levels.

The input-output mapping also discontinuous – small perturbations cause misclassification. Those perturbation are not dependent on the training, only on input of classification. (My comment – sparse coding is generally not smooth on input, another argument that sparse coding is part of internal mechanics of deep learning)

http://arxiv.org/abs/1312.6199

*From Maxout to Channel-Out: Encoding Information on Sparse Pathways*

This paper start with observation that max-out is a form of sparse coding: only one of the input pathway is chosen for father processing. From this inferred development of that principle:

remove “middle” layer which “choose” maximum input, and transfer maximal input at once into next level – make choice function index-aware. Some other choice function beside the max is considered, but max still seems the best

Piecewise-constant choice function make interesting reference to previous paper (discontinuity of input-output mapping)

http://arxiv.org/abs/1312.1909

*Unsupervised Feature Learning by Deep Sparse Coding*

This, for a difference is not about convolutional network.

Instead SIFT(or similar) descriptors are used to produce bag-of-words, sparse coding is used with max-out, and manifold learning applied to it. (http://en.wikipedia.org/wiki/Nonlinear_dimensionality_reduction)

http://arxiv.org/abs/1312.5783

*Generative NeuroEvolution for Deep Learning*

I’m generally wary of evolutionary methods, but this looks kind of interesting – it’s based on *compositional pattern producing network* (CPPN)- encoding geometric pattern as composition of simple functions.

This CPPN is used to encode connectivity pattern of ANN (Convolutional newtwork most used). Thus complete process is the combination of ANN training and evolutionary CPPN training

http://arxiv.org/abs/1312.5355

*Some Improvements on Deep Convolutional Neural Network Based Image Classification*, *Unsupervised feature learning by augmenting single images*

Botht papers seems about the same subject – squeeze more out of labeled images by applying a lot of transformation to them(Some of those transformations are implemented in cuda-convnet BTW)

http://arxiv.org/abs/1312.5402, http://arxiv.org/abs/1312.5242

*Exact solutions to the nonlinear dynamics of learning in deep linear neural networks*

Analytical exploration of toy 3-layer model *without_ actual non-linear neurons. Model completely linear to input (polynomial to weights). Nevertheless it show some interesting properties, like step in learning curve

http://arxiv.org/abs/1312.6120

**Optimization**

*Distributed Interior-point Method for Loosely Coupled Problems*

Mixing together all my favorite methods: Interior point, Newton, ADMM(Split-Bregman) into one algorithm and make a distribute implementation of it.

Mixing Newton and ADMM, ADMM and Interior point looks risky to me, though with a lot of subiterations it may work(that’s why it’s distributed – require a lot of calculating power)

Also I’m not sure about convergene of the combined algorithm – each step’s convergence is proven, but I’m not sure the same could be applyed to the combination.

Newton and ADMM have kind of contradicting optimal conditions – smoothness vs piecewise linearity. Would like to see more research on this…

http://arxiv.org/abs/1312.5440

*Total variation regularization for manifold-valued data*

Proximal mapping and soft thresholding for manifolds – analog of ADMM for manifolds.

http://arxiv.org/abs/1312.7710

**just interesting stuff**

*Coping with Physical Attacks on Random Network Structures*

Include finding vulnerable spots and results of random attacks

(My comment – shouldn’t it be connected to precolation theory?)

http://arxiv.org/abs/1312.6189

## November finds in #arxiv and NIPS 2013

This is “find in arxiv” reposts form my G+ stream for November.

**NIPS 2013**

*Accelerating Stochastic Gradient Descent using Predictive Variance Reduction*

Stochastic gradient (SGD) is the major tool for Deep Learning. However if you look at the plot of cost function over iteration for SGD you will see that after quite fast descent it becoming extremely slow, and error decrease could even become non-monotonous. Author explain by necessity of trade of between the step size and variance of random factor – more precision require smaller variance but that mean smaller descent step and slower convergence. “Predictive variance” author suggest to mitigate problem is the same old “adding back the noise” trick, used for example in Split Bregman. Worth reading IMHO.

*Predicting Parameters in Deep Learning*

Output of the first layer of ConvNet is quite smooth, and that could be used for dimensionality reduction, using some dictionary, learned or fixed(just some simple kernel). For ConvNet predicting 75% of parameters with fixed dictionary have negligible effect on accuracy.

http://papers.nips.cc/paper/5025-predicting-parameters-in-deep-learning

*Learning a Deep Compact Image Representation for Visual Tracking*

Application of ADMM (Alternating Direction Method of Multipliers, of which Split Bregman again one of the prominent examples) to denoising autoencoder with sparsity.

http://papers.nips.cc/paper/5192-learning-a-deep-compact-image-representation-for-visual-tracking

*Deep Neural Networks for Object Detection*

People from Google are playing with Alex Krizhevsky’s ConvNet

http://papers.nips.cc/paper/5207-deep-neural-networks-for-object-detection

**–arxiv (last)–**

*Are all training examples equally valuable?*

It’s intuitively obvious that some training sample are making training process worse. The question is – how to find wich sample should be removed from training? Kind of removing outliers. Authors define “training value” for each sample of binary classifier.

http://arxiv.org/pdf/1311.7080

*Finding sparse solutions of systems of polynomial equations via group-sparsity optimization*

Finding sparse solution of polynomial system with lifting method.

I still not completely understand why quite weak structure constraint is enough for found approximation to be solution with high probability. It would be obviously precise for binary 0-1 solution, but why for general sparse?

http://arxiv.org/abs/1311.5871

*Semi-Supervised Sparse Coding*

Big dataset with small amount of labeled samples – what to do? Use unlabeled samples for sparse representation. And train labeled samples in sparse representation.

http://arxiv.org/abs/1311.6834

From the same author, similar theme – Cross-Domain Sparse Coding

Two domain training – use cross domain data representation to map all the samples from both source and target domains to a data representation space with a common distribution across domains.

http://arxiv.org/abs/1311.7080

*Robust Low-rank Tensor Recovery: Models and Algorithms*

More of tensor decomposition with trace norm

http://arxiv.org/abs/1311.6182

*Complexity of Inexact Proximal Newton methods*

Application of Proximal Newton (BFGS) to subset of coordinates each step – active set coordinate descent.

http://arxiv.org/pdf/1311.6547

*Computational Complexity of Smooth Differential Equations*

Polynomial-memory complexity of ordinary differential equations.

http://arxiv.org/abs/1311.5414

**–arxiv (2)–**

**Deep Learning**

*Visualizing and Understanding Convolutional Neural Networks*

This is exploration of Alex Krizhevsky’s ConvNet

( https://code.google.com/p/cuda-convnet/ )

using “deconvnet” approach – using deconvolution on output of each layer and visualizing it. Results looks interesting – strting from level 3 it’s something like thersholded edge enchantment, or sketch. Also there are evidences supporting “learn once use everywhere” approach – convnet trained on ImageNet is also effective on other datasets

http://arxiv.org/abs/1311.2901

*Unsupervised Learning of Invariant Representations in Hierarchical Architectures*

Another paper on why and how deep learning works.

Attempt to build theoretical framework for invariant features in deep learning. Interesting result – Gabor wavelets are optimal filters for simultaneous scale and translation invariance. Relations to sparsity and scattering transform

http://arxiv.org/abs/1311.4158

**Computer Vision**

*An Experimental Comparison of Trust Region and Level Sets*

Trust regions method for energy-based segmentation.

Trust region is one of the most important tools in optimization, especially non-convex.

http://en.wikipedia.org/wiki/Trust_region

http://arxiv.org/abs/1311.2102

*Blind Deconvolution with Re-weighted Sparsity Promotion*

Using reweighted L2 norm for sparsity in blind deconvolution

http://arxiv.org/abs/1311.4029

**Optimization**

*Online universal gradient methods*

about Nesterov’s universal gradient method (

http://www.optimization-online.org/DB_FILE/2013/04/3833.pdf )

It use Bregman distance and related to ADMM.

The paper is application of universal gradient method to online learning and give bound on regret function.

http://arxiv.org/abs/1311.3832

**CS**

*A Component Lasso*

Approximate covariance matrix with block-diagonal matrix and apply Lasso to each block separately

http://arxiv.org/abs/1311.4472

_FuSSO: Functional Shrinkage and Selection Operator

Lasso in functional space with some orthogonal basis_

http://arxiv.org/abs/1311.2234

*Non-Convex Compressed Sensing Using Partial Support Information*

More of Lp norm for sparse recovery. Reweighted this time.

http://arxiv.org/abs/1311.3773

**–arxiv (1)–**

**Optimization, CS**

Scalable Frames and Convex Geometry

Frame theory is a basis(pun intended) of wavelets theory, compressed sening and overcomplete dictionaries in ML

http://en.wikipedia.org/wiki/Frame_of_a_vector_space

Here is a discussion how to make “tight frame”

http://en.wikipedia.org/wiki/Frame_of_a_vector_space#Tight_frames

from an ordinary frame by scaling *m* of its components

Interesting geometric insight provided – to do it *m*components of frame should make “blunt cone”

http://en.wikipedia.org/wiki/Convex_cone#Blunt_and_pointed_cones

http://arxiv.org/abs/1310.8107

Learning Sparsely Used Overcomplete Dictionaries via Alternating Minimization

Some bounds for convergence of dictionary learning. Converge id initial error is O(1/s^2), s- sparcity level

http://arxiv.org/abs/1310.7991

**Robust estimators**

Robustness of ℓ1 minimization against sparse outliers and its implications in Statistics and Signal Recovery

This is another exploration of L1 estimator. It happens (contrary to common sense) that L1 is not especially robust from “breakdown point” point of view if there is no constraint of noise. However it practical usefulness can be explained that it’s very robust to sparse noise

http://arxiv.org/abs/1310.7637

**Numerical**

Local Fourier Analysis of Multigrid Methods with Polynomial Smoothers and Aggressive coarsening

Overrelaxaction with Chebyshev weights on the fine grid, with convergence analysis.

http://arxiv.org/abs/1310.8385

## Deriving Gibbs distribution from stochastic gradients

Stochastic gradients is one of the most important tools in optimization and machine learning (especially for Deep Learning – see for example ConvNet). One of it’s advantage is that it behavior is well understood in general case, by application of methods of statistical mechanics.

In general form stochastic gradient descent could be written as

where is a random variable with expectation zero.

To apply methods of statistical mechanics we can rewrite it in continuous form, as stochastic gradient flow

and random variable *F(t)* we assume to be white noise for simplicity.

In that moment most of textbooks and papers refer to “methods of statistical mechanics” to show that

stochastic gradient flow has invariant probability distribution, which is called Gibbs distribution

and from here derive some interesting things like temperature and free energy.

The question is – how Gibbs distribution derived from stochastic gradient flow?

First we have to understand what stochastic gradient flow really means.

It’s not a partial differential equation (PDE), because it include random variable, which is not a function . In fact it’s a stochastic differential equation (SDE) . SDE use some complex mathematical machinery and relate to partial differential equations, probability/statistics, measure theory and ergodic theory. However they used a lot in finance, so there is quite a number of textbooks on SDE for non-mathematicians. For the short, minimalistic and accessible book on stochastic differential equation I can’t recommend highly enough introduction to SDE by L.C. Evans

SDE in question is called Ito diffusion. Solution of that equation is a stochastic process – collection of random variables parametrized by time. Sample path of stochastic process in question as a function of time is nowhere differentiable – it’s difficult to talk about it in term of derivatives, so it is defined through it’s integral form.

First I’ll notice that integral of white noise is actually Brownian motion, or Wiener process.

Assume that we have stochastic differential equation written in informal manner

with *X* -stochastic process and *F(t)* – white noise

It’s integral form is

where *W(t)* is a Wiener process

This equation is usually written in the form

This is only a notation for integral equation, *d* here is not a differential.

Returning to (1)

is an integral along sample path, it’s meaning is obvious, or it can be defined as limit of Riemann sums with respect to time.

The most notable thing here is

– integral with respect to Wiener process (3)

It’s a stochastic integral, and it’s defined in the courses of stochastic differential equation as the limit of Riemann sums of random variables, in the manner similar to definition of ordinary integral.

Curiously, stochastic integral is not quite well defined. Depending on the form of the sum it produce different results, like Ito integral:

Different Riemann sums produce different integral – Stratonovich integral:

Ito integral used more often in statistics because it use – it don’t “look forward”, and Stratonovich more used in theoretical physics.

Returning to Ito integral – Ito integral is stochastic process itself, and it has expectation zero for each *t*.

From definition of Ito integral follow one of the most important tools of stochastic calculus – Ito Lemma (or Ito formula)

Ito lemma states that for solution of SDE (2)

*X, b, W* – vectors, *g* – matrix

were *W* is Wiener process (actually some more general process) and *b* and *g* are good enough

where is the gradient.

From Ito lemma follow Ito product rule for scalar processes: applying Ito formula to process combined from two processes *X* and *Y* to function *u(V) = XY*

Using Ito formula and Ito product rule it is possible to get Feynman–Kac formula (derivation could be found in the wikipedia, it use only Ito formula, Ito product rule and the fact that expectation of Ito integral (3) is zero):

for partial differential equation (PDE)

with terminal condition

solution can be written as conditional expectation:

Feynman–Kac formula establish connection between PDE and stochastic process.

From Feynman–Kac formula taking and we get Kolmogorov backward equation :

for

equation

with terminal condition (4) have solution as conditional expectation

From Kolmogorov backward equation we can obtain Kolmogorov forward equation, which describe evolution of probability density for random process *X* (2)

In SDE courses it’s established that (2) is a Markov process and has transitional probability *P* and transitional density *p*:

*p(x, s, y, t) = *probability density at being at *y* in time *t*, on condition that it started at *x* in time *s*

taking *u* – solution of (5) with terminal condition (6)

From Markov property

from here

form here

from (5)

Now we introduce dual operator

By integration by part we can get

and from (7)

for *t=T*

This is true for any , wich is independent from *p*

And we get Kolmogorov forward equation for *p*. Integrating by *x* we get the same equation for probability density at any moment *T*

Now we return to Gibbs invariant distribution for gradient flow

Stochastic gradient flow in SDE notation

– integral of white noise is Wiener process

We want to find invariant probability density . Invariant – means it doesn’t change with time,

so from Kolmogorov forward equation

or

removing gradient

*C = 0* because we want integrable

and at last we get Gibbs distribution

Recalling again the chain of reasoning:

Wiener process →

SDE + Ito Lemma + Ito product rule + zero expecation of Ito integral →

Kolmogorov backward equation + Markov property of SDE →

Kolmogorov forward equation for probability density →

## Meaning of conditional probability

Conditional probability was always baffling me. Empirical, frequentists meaning is clear, but the abstract definition, originating from Kolmogorov – what was its *mathematical *meaning? How it can be derived? It’s a nontrivial definition and is appearing in the textbooks out the air, without measure theory intuition behind it.

Here I mostly follow Chang&Pollard paper *Conditioning as disintegartion. *Beware that the paper use non-standard notation, but this post follow more common notation, same as in wikipedia.

Here is example form Chang&Pollard paper:

Suppose we have distribution on concentrated in two straight lines and with respective density and angles with *X* axis . Observation (*X,Y*) taken, giving , what is probability that point lies on the line ?

Standard approach would be approximate with and take limit with

Not only taking this limit is kind of cumbersome, it’s also not totally obvious that it’s the same conditional probability that defined in the abstract definition – we are replacing ratio with limit here.

Now what is “correct way” to define conditional probabilities, especially for distributions?

For simplicity we will first talk about single scalar random variable, defined on probability space. We will think of random variable ** X **as function on the sample space. Now condition define fiber – inverse image of .

Disintegration theorem say that probability measure on the sample space can be decomposed into two measures – parametric family of measures induced by original probability on each fiber and “orthogonal” measure on – on the parameter space of the first measure. Here is the space of values of ** X ** and serve as parameter space for measures on fibers. Second measure induced by the inverse image of the function (random variable) for each measurable set on . This second measure is called Pushforward measure. Pushforward measure is just for measurable set on (in our case) taking its

**inverse image on sample space and measuring it with μ.**

*X*Fiber is in fact sample space for conditional event, and measure on fiber is our conditional distribution.

Full statement of the theorem require some term form measure theory. Following wikipedia

Let P(X) is collection of Borel probability measures on X, P(Y) is collection of Borel probability measures on Y

Let Y and X be two Radon spaces. Let μ ∈ P(Y), let : Y → X be a Borel- measurable function, and let ν ∈ P(X) be the pushforward measure .

* Then there exists a ν-almost everywhere uniquely determined family of probability measures ⊆ P(Y) such that

* the function is Borel measurable, in the sense that is a Borel-measurable function for each Borel-measurable set B ⊆ Y;

* “lives on” the fiber : for ν-almost all x ∈ X,

and so

* for every Borel-measurable function : Y → [0, ∞],

From here for any event *E* form Y

This was complete statement of the disintegration theorem.

Now returning to Chang&Pollard example. For formal derivation I refer you to the original paper, here we will just “guess” , and by uniqueness it give us disintegration. Our conditional distribution for will be just point masses on the intersections of lines and with axis

Here is delta function – point mass.

and for

Our conditional probability that event lies on with condition , form conditional density thus

Another example from Chen&Pollard. It relate to sufficient statistics. Term sufficient statistic used if we have probability distribution depending on some parameter, like in maximum likelihood estimation. Sufficient statistic is some function of sample, if it’s possible to estimate parameter of distribution from only values of that function in the best possible way – adding more data form the sample will not give more information about parameter of distribution.

Let be uniform distribution on the square . In that case M = max(x, y) is sufficient statistics for . How to show it?

Let take our function , and make disintegration.

is a uniform distribution on edges where *x* and *y* equal *m* and

is density of conditional probability and it doesn’t depend on

For any – means that * M *is* * sufficient.

It seems that in most cases disintegration is not a tool for finding conditional distribution. Instead it can help to guess it and form uniqueness prove that the guess is correct. That correctness could be nontrivial – there are some paradoxes similar to Borel Paradox in Chang&Pollard paper.

## Finds in arxiv, october

This is duplication of my ongoing G+ series of post on interesting for me papers in arxiv. Older posts are not here but in my G+ thread.

Finds in #arxiv :

*Optimization, numerical & convex, ML*

The Linearized Bregman Method via Split Feasibility Problems: Analysis and Generalizations

Reformulation of Split Bregman/ ADMM as split feasibility problem and algorithm/convergence for generalized split feasibility by Bregman projection. This general formulation include both Split Bregman and Kaczmarz (my comment – randomized Kaczmarz seems could be here too)

http://arxiv.org/abs/1309.2094

Stochastic gradient descent and the randomized Kaczmarz algorithm

Hybrid of randomized Kaczmarz and stochastic gradient descent – into my “to read” pile

http://arxiv.org/abs/1310.5715

Trust–Region Problems with Linear Inequality Constraints: Exact SDP Relaxation, Global Optimality and Robust Optimization

“Extended” trust region for linear inequalities constrains

http://arxiv.org/abs/1309.3000

Conic Geometric Programming

Unifing framwork for conic and geometric programming

http://arxiv.org/abs/1310.0899

http://en.wikipedia.org/wiki/Geometric_programming

http://en.wikipedia.org/wiki/Conic_programming

Gauge optimization, duality, and applications

Another big paper about different, not Lagrange duality, introduced by Freund (1987)

http://arxiv.org/abs/1310.2639

Color Bregman TV

mu parameters in split bregman made adaptive, to exploit coherence of edges in different color channels

http://arxiv.org/abs/1310.3146

Iteration Complexity Analysis of Block Coordinate Descent Methods

Some convergence analysis for BCD and projected gradient BCD

http://arxiv.org/abs/1310.6957

Successive Nonnegative Projection Algorithm for Robust Nonnegative Blind Source Separation

Nonnegative matrix factorization

http://arxiv.org/abs/1310.7529

Scaling SVM and Least Absolute Deviations via Exact Data Reduction

SVN for large-scale problems

http://arxiv.org/abs/1310.7048

Image Restoration using Total Variation with Overlapping Group Sparsity

While title is promising I have doubt about that paper. The method authors suggest is equivalent to adding averaging filter to TV-L1 under L1 norm. There is no comparison to just applying TV-L1 and smoothing filter interchangeably.The method author suggest is very costly, and using median filter instead of averaging would cost the same while obviously more robust.

http://arxiv.org/abs/1310.3447

*Deep learning*

Deep and Wide Multiscale Recursive Networks for Robust Image Labeling

_Open source_ matlab/c package coming soon(not yet available)

http://arxiv.org/abs/1310.0354

Improvements to deep convolutional neural networks for LVCSR

convolutional networks, droput for speech recognition,

http://arxiv.org/abs/1309.1501v1

DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition

Already discussed on G+ – open source framework in “learn one use everywhere” stile. Learning done off-line on GPU using ConvNet, and recognition is online in pure python.

http://arxiv.org/abs/1310.1531

Statistical mechanics of complex neural systems and high dimensional data

Big textbook-like overview paper on statistical mechanics of learning. I’ve put it in my “to read” pile.

http://arxiv.org/abs/1301.7115

Randomized co-training: from cortical neurons to machine learning and back again

“Selectron” instead of perception – neurons are “specializing” with weights.

http://arxiv.org/abs/1310.6536

Provable Bounds for Learning Some Deep Representations

http://arxiv.org/abs/1310.6343

Citation:”The current paper presents both an interesting family of denoising autoencoders as

*Computer vision*

Online Unsupervised Feature Learning for Visual Tracking

Sparse representation, overcomplete dictionary

http://arxiv.org/abs/1310.1690

From Shading to Local Shape

Shape restoration from local shading – could be very useful in low-feature environment.

http://arxiv.org/abs/1310.2916

Fast 3D Salient Region Detection in Medical Images using GPUs

Finding interest point in 3D images

http://arxiv.org/abs/1310.6736

Object Recognition System Design in Computer Vision: a Universal Approach

Grid-based universal framework for object detection/classification

http://arxiv.org/abs/1310.7170

Gaming :)

Lyapunov-based Low-thrust Optimal Orbit Transfer: An approach in Cartesian coordinates

For space sim enthusiast :)

## ConvNet for windows

I have seen an excellent wlakthrough on building Alex Krizhevsky’s cuda-convnet for windows, but difference in configuration and installed packages could be tiresome. So here is complete build of convnet for windows 64:

https://github.com/s271/win_convnet

It require having CUDA compute capability 2.0 or better GPU of cause, Windows 64bit, Visual Studio 64bits and Python 64bit with NumPy installed. The rest of libs and dlls are precomplied. In building it I’ve followed instructions by Yalong Bai (Wyvernbai) from http://www.asiteof.me/archives/50.

Read Readme.md before installation – you may (or may not) require PYTHONPATH environmental variable set.

On side note I’ve used WinPython for both libraries and running the package. WinPython seems a very nice package, which include Spyder IDE. I have some problems with Spyder though – sometimes it behave erratically during debugging/running the code. Could be my inexperience with Spyder though. Another nice package – PythonXY – regretfully can not be used – it has only 32 bit version and will not compile with/run 64 bit modules.

## CUDA gamification experiment

This demo was inspired by Escapist article “I hate magic” by Robert Rath ( http://www.escapistmagazine.com/artic… ) and “continuous game of life” (http://arxiv.org/abs/1111.1567 ) by Stephan Rafler

This is attempt to show how GPGPU could be used to model magic as different physics.

The demo run at 70 fps at laptop with GF GTX 670M. With some tradeoffs it can be made run much faster

require CUDA GPGPU with at least 2.0 Cuda compute capability (practically all modern cards, GF GTX 550 or better)

Source code:

https://github.com/s271/cuMagic/

## __volatile__ in #cuda reduce sample

“Reduce” is one of the most useful samples in NVIDIA CUDA SDK. It’s implementation of highly optimized cuda algorithm for some of the elements of the array of the arbitrary length. It’s hardly possible to make anything better and generic enough with existing GPGPU architecture (if anyone know something as generic but considerably more efficient I’d like to know too). One of the big plus of the reduce algorithm is that it can work for any binary commutative associative operation – like min, max, multiply etc. And NVIDIA sample provide this ability – it’s implemented as reduce on template class, so all one have to do is implement class with overload of addition and assignment operations.

However there is one obstacle – it’s a __volatile__ qualifier in the code. Simple overload of “=” “+=” and “+” operations in class LSum cause compiler error like

error: no operator “+” matches these operands

1> operand types are: LSum + volatile LSum

The answer is add __volatile__ to all class operation, but there is the trick here:

for “=” just

volatile LSum& operator =(volatile LSum &rhs)

is not enough. You should add volatile to the end too, to specify not only input and output, but function itself as volatile.

At the end class looks like:

class LSum

{

public:

…

__device__ LSum& operator+=(volatile LSum &rhs)

{

…

return *this;

};

__device__ LSum operator+(volatile LSum &rhs)

{

LSum res = *this;

res += rhs;

return res;

};

__device__ LSum& operator =(const float &LSum)

{

…

return *this;

};

__device__ volatile LSum& operator =(volatile LSum &rhs) volatile

{

…

return *this;

};

};