Mirror Image

Mostly AR and Stuff

Is Robust Statistics have formal mathematical foundation?

As I have already written I have a trouble understanding what robust estimators actually estimate from probabilistic or other formal point of view. I mean estimators which are not maximum likelihood estimators. There is a formal definition which doesn’t explain a lot to me. It looks like estimator estimate some quantity, and we know how good we are at estimating it, but how we know what we are actually estimate? Or does this question even make sense? But that is actually a minor bummer. A problem with understanding outliers is a lot worse for me. A breakdown point is a fundamental concept in robust statistics. And breakdown point is defined as a relative number of outliers in the sample set. The problem is, it seems there is no formal definition of outlier in statistics or probability theory. We can talk about mixture models, and tail distributions but those concepts are not quite consistent with breakdown point. Breakdown point looks like it belong to area of optimization/topology, not statistics. Could it be that outliers could be defined consistently only if we have some additional structural information/constraints beside statistical (distribution)? That inability to reconcile statistics and optimization is a problem which causing cognitive headache for me.


11, April, 2011 - Posted by | sci | , , , ,

Sorry, the comment form is closed at this time.

%d bloggers like this: